Multidirectional Hierarchical Nanocomposites Made by Carbon Nanotube Growth within Layer-by-Layer-Assembled Films
详细信息    查看全文
文摘
We demonstrate fabrication of multidirectional and hierarchical carbon nanotube (CNT) films on diverse substrates, using nanocomposite catalyst films prepared by layer-by-layer (LBL) assembly. CNT density and yield are controlled by the thickness of a montmorillonite clay/poly(dyallyldimethyl ammonium chloride (MTM/PDDA) support film. Using identical methods, few-walled CNTs are grown on flat silicon substrates, carbon fibers, and titanium wire mesh. On flat substrates, unique bilayer CNT forests, reminiscent of microscale 鈥渁ccordions鈥? form because of diffusion of the Fe catalyst through the support which is then split because of mechanical forces exerted by the growing CNTs. Electrochemical measurements of CNT-coated Ti wires demonstrate an 85-fold enhancement in specific capacitance, and 7.1 F/g for the CNTs alone. This novel approach to substrate engineering for CNT growth can create materials with unique and nonlinear properties by hierarchical ordering of CNTs at multiple length scales, and is scalable to large-area foils and fabrics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700