Structural Patterns Arising during Synthetic Growth of Fullerene-Like Sulfocarbide
详细信息    查看全文
文摘
Carbon-based fullerene-like (FL) solid compounds are a new class of materials with extraordinary mechanical properties, which can be tuned by the dopant choice and its concentration. In this work, FL sulfocarbide (CSx) was studied by DFT simulations during synthetic growth with CmSn (m, n 鈮?2). The energetic and structural effects of S atoms at C sites in a graphene-like network were addressed by geometry optimizations and cohesive energy calculations. Results showed that for S concentrations lower than 10 at. %, smoothly bent pure hexagonal networks predominate. For higher S concentrations, the higher defect concentration leads to stronger deformation of the graphene-like sheets. It was determined that FL-CSx is well-structured (not amorphous) for S contents between 10 and 20 at. %. In contrast to other FL materials, bond rotation mechanisms are not expected to play any significant role during FL-CSx formation, and cross-linking sites are less frequent and may be assimilated in the planar structure during growth. Both quasi-planar networks and cage-like conformations were found to form during the synthetic growth of CSx. The detailed analysis of how CSx structural patterns form during its synthetic growth provides a realistic picture for the deposition of this novel compound by magnetron sputtering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700