Minimalist Model for the Dynamics of Helical Polypeptides: A Statistic-Based Parametrization
详细信息    查看全文
文摘
Low-resolution models are often used to address macroscopic time and size scales in molecular dynamics simulations of biomolecular systems. Coarse graining is often coupled to knowledge-based parametrization to obtain empirical potentials able to reproduce the system thermodynamic behavior. Here, a minimalist coarse grained (GC) model for the helical structures of proteins is reported. A knowledge-based parametrization strategy is coupled to the explicit inclusion of hydrogen-bonding-related terms, resulting in an accurate reproduction of the structure and dynamics of each single helical type, as well as the internal conformational variables correlation. The proposed strategy of basing the force field terms on real physicochemical interactions is transferable to different secondary structures. Thus, this work, though conclusive for helices, is to be considered the first of a series devoted to the application of the knowledge-based, physicochemical model to extended secondary structures and unstructured proteins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700