Understanding Strong Two-Photon Absorption in -Conjugated Porphyrin Dimers via Double-Resonance Enhancement in a Three-Level Model
详细信息    查看全文
文摘
We present the two-photon absorption (2PA) spectra of a series of conjugated porphyrin dimers and show that they possess extremely large intrinsic (femtosecond) peak 2PA cross sections, up to 2 = 1 × 104 GM in the near-IR region; these are among the highest values measured for any organic molecule. Moreover, we demonstrate that the second-order perturbation theory applied to a simple three-level model gives a perfect quantitative description of the observed 2PA cross section. By comparing all the factors of the three-level model for dimers with those of corresponding monomer (for which 2 = 20 GM), we explain an ~500-fold cooperative enhancement in 2 and find that the most important factor is the strength of excited-state transition. The matrix element of dipole moment of this transition amounts gigantic values of 30-40 D for conjugated porphyrin dimers, which can be accounted for a large delocalization radius (large electron-hole separation) in this state. We also demonstrate efficient generation of singlet oxygen upon one- and two-photon excitation of these porphyrin dimers, which can be useful for two-photon initiated photodynamic therapy of cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700