Biogeochemical Mechanisms of Selenium Exchange between Water and Sediments in Two Contrasting Lentic Environments
详细信息    查看全文
文摘
The biogeochemical mechanisms of Se exchange between water and sediments in two contrasting lentic environments were assessed through examination of Se speciation in the water column, porewater, and sediment. High-resolution (7 mm) vertical profiles of <0.45 渭m Se species across the sediment-water interface demonstrate that the behavior of dissolved Se(VI), Se(IV), and organo-Se are closely linked to redox conditions as revealed by porewater profiles of redox-sensitive species (dissolved O2, NO3鈭?/sup>, Fe, Mn, SO42-, and 危H2S). At both sites Se(VI) is removed from solution in suboxic near-surface porewaters demonstrating that the sediments are serving as diffusive sinks for Se. X-ray absorption near edge spectroscopy (XANES) of sediments suggests that elemental Se and organo-Se represent the dominant sedimentary sinks for dissolved Se. Dissolved Se(IV) and organo-Se are released to porewaters in the near-surface sediments resulting in the diffusive transport of these species into the water column, where between-site differences in the depths of release can be linked to differences in redox zonation. The presence or absence of emergent vegetation is proposed to present a dominant control on sedimentary redox conditions as well as on the recycling and persistence of reduced Se species in bottom waters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700