Influence of Acidic (H3PO4) and Alkaline (NaOH) Additives on the Catalytic Reductive Fractionation of Lignocellulose
详细信息    查看全文
文摘
Reductive catalytic fractionation of lignocellulose is a promising “lignin-first” biorefinery strategy wherein lignin is solvolytically extracted from the cell wall matrix and simultaneously disassembled, resulting in a stable lignin oil and a solid carbohydrate-rich residue. Herein, we report on the different influence of acidic (H3PO4) and alkaline (NaOH) additives on the Pd/C-catalyzed reductive processing of poplar wood in methanol (MeOH). It was found that the addition of small quantities of H3PO4 results in three rather than two product streams, since under acidic conditions both delignification and alcoholysis of hemicellulose are promoted, leaving behind a cellulose-rich pulp. The simultaneous acid-catalyzed fractionation of the carbohydrates into separate cellulose and hemicellulose streams provides opportunities for more efficient downstream conversion, as processing parameters can be tailored to the needs of both streams. Alkaline conditions, on the other hand, also enhance delignification, but additionally cause (i) the formation of lignin products other than those obtained under neutral and acidic conditions, (ii) a hampered degree of lignin depolymerization, and (iii) substantial loss of cellulose from the pulp. Further on, a modified process descriptor (LFFE: lignin first fractionation efficiency) was applied to evaluate the fractionation efficiency of lignocellulose in its three major constituents. According to this new efficiency measure, mildly acidic conditions performed best.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700