Fast Magic-Angle Spinning Three-Dimensional NMR Experiment for Simultaneously Probing H—H and N—H Proximities in Solids
详细信息    查看全文
文摘
A fast magic-angle spinning (MAS, 70 kHz) solid-state NMR experiment is presented that combines 1H Double-Quantum (DQ) and 14N—1H HMQC (Heteronuclear Multiple-Quantum Coherence) pulse-sequence elements, so as to simultaneously probe H—H and N—H proximities in molecular solids. The proposed experiment can be employed in both two-dimensional (2D) and three-dimensional (3D) versions: first, a 2D 14N HMQC-filtered 1H-DQ experiment provides specific DQ-SQ correlation peaks for proton pairs that are in close proximities to the nitrogen sites, thereby achieving spectral filtration. Second, a proton-detected three-dimensional (3D) 1H(DQ)-14N(SQ)-1H(SQ) experiment correlates 1H(DQ)-1H(SQ) chemical shifts with 14N shifts such that longer range N···H—H correlations are observed between protons and nitrogen atoms with internuclear NH distances exceeding 3 Å. Both 2D and 3D versions of the proposed experiment are demonstrated for an amino acid hydrochloride salt, l-histidine·HCl·H2O, and a DNA nucleoside, guanosine·2H2O. In the latter case, the achieved spectral filtration ensures that DQ cross peaks are only observed for guanine NH and CH8 1H resonances and not ribose and water 1H resonances, thus providing insight into the changes in the solid-state structure of this hydrate that occur over time; significant changes are observed in the NH and NH2 1H chemical shifts as compared to the freshly recrystallized sample previously studied by Reddy et al., Cryst. Growth Des. 2015, 15, 5945.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700