Applying In-Silico Retention Index and Mass Spectra Matching for Identification of Unknown Metabolites in Accurate Mass GC-TOF Mass Spectrometry
详细信息    查看全文
文摘
One of the major obstacles in metabolomics is the identification of unknown metabolites. We tested constraints for reidentifying the correct structures of 29 known metabolite peaks from GCT premier accurate mass chemical ionization GC-TOF mass spectrometry data without any use of mass spectral libraries. Correct elemental formulas were retrieved within the top-3 hits for most molecular ion adducts using the 鈥淪even Golden Rules鈥?algorithm. An average of 514 potential structures per formula was downloaded from the PubChem chemical database and in-silico-derivatized using the ChemAxon software package. After chemical curation, Kovats retention indices (RI) were predicted for up to 747 potential structures per formula using the NIST MS group contribution algorithm and corrected for contribution of trimethylsilyl groups using the Fiehnlib RI library. When matching the range of predicted RI values against the experimentally determined peak retention, all but three incorrect formulas were excluded. For all remaining isomeric structures, accurate mass electron ionization spectra were predicted using the MassFrontier software and scored against experimental spectra. Using a mass error window of 10 ppm for fragment ions, 89% of all isomeric structures were removed and the correct structure was reported in 73% within the top-5 hits of the cases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700