Enhanced Dechlorination of 1,2-Dichloroethane by Coupled Nano Iron-Dithionite Treatment
详细信息    查看全文
文摘
1,2-Dichloroethane (1,2-DCA) is a chlorinated solvent classified as a probable human carcinogen. Due to its extensive use in industrial applications, widespread contamination, and recalcitrance toward abiotic dechlorination, 1,2-DCA remains a challenging compound for the remediation community. Over the past decade, nano zerovalent iron (nZVI) has been efficiently used to treat many of the chlorinated compounds of concern. However, thus far, even nZVI (monometallic or bimetallic) has been unable to dechlorinate 1,2-DCA. Therefore, an alternative treatment coupling nZVI with dithionite to treat 1,2-DCA is proposed in this work. Coupled nZVI-dithionite was able to degrade >90% 1,2-DCA over the course of a year. The effects of dithionite and nZVI loadings, carboxymethyl cellulose (CMC) coating, addition of palladium, and other iron species as metal surfaces on the degradation kinetics were also investigated. Observed pseudo-first-order rate constants (kobs) ranged from 3.8 × 10–3 to 7.8 × 10–3 d–1. Both nucleophilic substitution and reductive dechlorination are the proposed mechanisms for 1,2-DCA degradation by coupled nZVI-dithionite treatment. Characterization analysis of the nZVI-dithionite nanoparticles shows that most of the iron was still preserved in the zerovalent state even after more than one year of reactivity with some iron sulfide (FeS) formation. Scanning electron microscopy (SEM) analysis shows that the nanosized spherical particles were still present along with the FeS platelets. This novel treatment represents the first nZVI-based formulation to achieve nearly complete degradation of 1,2-DCA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700