Structural Insights into Trapping and Dissociation of Small Molecules in K+ Channels
详细信息    查看全文
文摘
K+ channels play a critical role in numerous physiological and pathophysiological processes rendering them an attractive target for therapeutic intervention. However, the hERG K+ channel poses a special challenge in drug discovery, since block of this channel by a plethora of diverse chemical entities can lead to long QT syndrome and sudden death. Of particular interest is the so-called trapping phenomenon, characterized by capture of a drug behind closed channel gates, which harbors an increased pro-arrhythmic risk. In this study we investigated the influence of trapped blockers on the gating dynamics and probed the state dependence of dissociation in K+ channels by making use of the quaternary tetrabutylammonium. By applying essential dynamics simulations and two-electrode voltage clamp we obtained detailed insights into the dynamics of trapping in KcsA and hERG. Our simulations suggest that the trapped TBA influences the F656 flexibility during gate closure. Based on these findings, we provide a structural hypothesis for drug trapping. Further our simulations reveal the extent of gate opening necessary for drug dissociation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700