Enhanced Photoelectrochemical Response of BaTiO3 with Fe Doping: Experiments and First-Principles Analysis
详细信息    查看全文
文摘
We use a combination of experiments and first-principles density functional theory based calculations in a study of the photoelectrochemical properties of Fe-doped BaTiO3 nanopowder. BaTiO3 with 0.5鈥?.0 atom % Fe doping is synthesized via a polymeric precursor route and characterized with X-ray diffractometry (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV鈥搗is spectroscopy, and M枚ssbauer spectroscopy. We find a red shift of 0.39 eV in the UV鈥搗is spectrum and hence an improved photoelectrochemical activity in the visible range upon Fe doping in BaTiO3. The origin of the observed activity in the visible range is traced through the calculated electronic structure to the electronic states associated with Fe at energies within the band gap. A reasonable agreement between the changes in measured spectra and those in calculated electronic structure augurs well for a judicious use of first-principles calculations in screening of dopants in the design of doped oxide materials with enhanced photoelectrochemical activity, such as that of Fe-doped BaTiO3 demonstrated here.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700