Electrochemical Bubble-Based Bidirectional Microfluidic Transport
详细信息    查看全文
文摘
With the aim of application to biochemical analyses, efficient bidirectional microfluidic transport was achieved through the reversible electrochemical production and shrinkage of hydrogen bubbles. A three-electrode system with a platinum black working electrode, a Ag/AgCl reference electrode, and a platinum auxiliary electrode was incorporated into a poly(dimethylsiloxane) structure containing the necessary flow channels and compartments. The influence of the electrode and flow channel structures on the operation of the system was investigated. The production and shrinkage of bubbles was achieved by applying appropriate potentials to the working electrode, which minimized the influence of spontaneous shrinkage resulting from the oxidizing effect of dissolved oxygen. Device performance depended on the structure of the working electrode, meaning that further optimization will be necessary. The device was shown to withdraw solution through a minimally invasive needle and to process liquid plugs in a microfluidic system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700