Behavior of Engineered Nanoparticles in Landfill Leachate
详细信息    查看全文
文摘
This research sought to understand the behavior of engineered nanoparticles in landfill leachate by examining the interactions between nanoparticles and leachate components. The primary foci of this paper are the effects of ZnO, TiO2, and Ag nanoparticles on biological landfill processes and the form of Zn, Ti, and Ag in leachate following the addition of nanoparticles. Insight into the behavior of nanoparticles in landfill leachate was gained from the observed increase in the aqueous concentrations over background for Zn, Ti, and Ag in some tested leachates attributed to leachate components interacting with the nanoparticle coatings resulting in dispersion, dissolution/dissociation, and/or agglomeration. Coated nanoparticles did not affect biological processes when added to leachate; five-day biochemical oxygen demand and biochemical methane potential results were not statistically different when exposed to nanoparticles, presumably due to the low concentration of dissolved free ionic forms of the associated metals resulting from the interaction with leachate components. Chemical speciation modeling predicted that dissolved Zn in leachate was primarily associated with dissolved organic matter, Ti with hydroxide, and Ag with hydrogen sulfide and ammonia; less than 1% of dissolved Zn and Ag was in the free ionic form, and free ionic Ti and Ag concentrations were negligible.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700