Infrared Spectra and Density Functional Calculations for Singlet CH2═SiX2 and Triplet HC–SiX3 and XC–SiX3 Intermediates in Reactions of Laser-Ablated Silicon Atoms with Di-, Tri-, and Tetrahalomethanes
详细信息    查看全文
  • 作者:Han-Gook Cho ; Lester Andrews
  • 刊名:Inorganic Chemistry
  • 出版年:2016
  • 出版时间:March 21, 2016
  • 年:2016
  • 卷:55
  • 期:6
  • 页码:2819-2829
  • 全文大小:688K
  • ISSN:1520-510X
文摘
Reactions of laser-ablated silicon atoms with di-, tri-, and tetrahalomethanes in excess argon were investigated, and the products were identified from the matrix infrared spectra, isotopic shifts, and density functional theory energy, bond length, and frequency calculations. Dihalomethanes produce planar singlet silenes (CH2═SiX2), and tri- and tetrahalomethanes form triplet halosilyl carbenes (HC–SiX3 and XC–SiX3). The Si-bearing molecules identified are the most stable, lowest-energy product in the reaction systems. While the C–Si bond in the silene is a true double bond, the C–Si bond in the carbene is a shortened single bond enhanced by hyperconjugation of the two unpaired electrons on C to σ*(Si–X) orbitals, which contributes stabilization through a small amount of π-bonding and reduction of the HCSi or XCSi angles. The C–Si bond lengths in these carbenes (1.782 Å for HC–SiF3) are between the single-bond length in the unobserved first insertion intermediate (1.975 Å for CHF2–SiF) and the double-bond length in the silene (1.704 Å for CHF═SiF2). The silicon s2p2 and titanium s2d2 electron configurations produce similar primary products, but the methylidyne with Ti has a bond to carbon stronger than that of the halosilyl carbene.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700