Flattening Process of Polymer Chains Irreversibly Adsorbed on a Solid
详细信息    查看全文
文摘
We report the structural relaxation process of irreversibly adsorbed polymer chains via thermal annealing that lie flat on a solid (“flattened chains”). Amorphous polystyrene and quartz, which together constitute a weakly attractive system, was used as a model where the local chain conformations of the flattened chains were investigated by sum frequency generation spectroscopy (SFG). Two different film preparation processes (i.e., spin coating and dip coating methods) were utilized to create different initial chain conformations. The spin-coated and dip-coated PS thin films were annealed at a temperature far above the bulk glass transition temperature to reach the “quasiequilibrium” state and subsequently rinsed with chloroform to uncover the buried flattened chains. The SFG results revealed that the backbone chains (constituted of CH and CH2 groups) of the flattened PS chains preferentially orient to the weakly interactive substrate surface via thermal annealing regardless of the initial chain conformations, while the orientation of the phenyl rings becomes randomized. We postulate that increasing the number of surface-segmental contacts (i.e., enthalpic gain) is the driving force for the flattening process of the polymer chains, even onto a weakly interactive solid to overcome the conformational entropy loss in the total free energy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700