Uniform Graphene Quantum Dots Patterned from Self-Assembled Silica Nanodots
详细信息    查看全文
文摘
Graphene dots precisely controlled in size are interesting in nanoelectronics due to their quantum optical and electrical properties. However, most graphene quantum dot (GQD) research so far has been performed based on flake-type graphene reduced from graphene oxides. Consequently, it is extremely difficult to isolate the size effect of GQDs from the measured optical properties. Here, we report the size-controlled fabrication of uniform GQDs using self-assembled block copolymer (BCP) as an etch mask on graphene films grown by chemical vapor deposition (CVD). Electron microscope images show that as-prepared GQDs are composed of mono- or bilayer graphene with diameters of 10 and 20 nm, corresponding to the size of BCP nanospheres. In the measured photoluminescence (PL) spectra, the emission peak of the GQDs on the SiO2 substrate is shown to be at 395 nm. The fabrication of GQDs was supported by the analysis of the Raman spectra and the observation of PL spectra after each fabrication step. Additionally, oxygen content in the GQDs is rationally controlled by additional air plasma treatment, which reveals the effect of oxygen content to the PL property.

Keywords:

Graphene quantum dots; block copolymer; chemical vapor deposition; photoluminescence

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700