Far-Red Emission of mPlum Fluorescent Protein Results from Excited-State Interconversion between Chromophore Hydrogen-Bonding States
详细信息    查看全文
文摘
Fluorescent proteins with large Stokes shifted emission beyond 600 nm are actively sought for live-cell imaging applications. The mechanism of excited-state relaxation leading to the Stokes shift in the mPlum fluorescent protein, which emits at a peak wavelength of 650 nm, has been previously investigated by both ultrafast spectroscopy and theoretical methods. Here, we report that femtosecond time-resolved area-normalized emission spectra of mPlum show a clear isoemissive point. This feature can only result from a system with two emitting states, rather than a system that undergoes a continuous spectral red shift, for example, as expected from typical solvation. Global analysis of the femtosecond time-resolved fluorescence spectra reveals time constants associated with chromophore relaxation, excited-state population transfer, and an excited-state lifetime of the final state. The observations confirm the findings of recent quantum chemical calculations on mPlum.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700