Complex Flow and Composition Path in CO2 Injection Schemes from Density Effects
详细信息    查看全文
  • 作者:Tausif Ahmed ; Hadi Nasrabadi ; Abbas Firoozabadi
  • 刊名:Energy & Fuels
  • 出版年:2012
  • 出版时间:July 19, 2012
  • 年:2012
  • 卷:26
  • 期:7
  • 页码:4590-4598
  • 全文大小:523K
  • 年卷期:v.26,no.7(July 19, 2012)
  • ISSN:1520-5029
文摘
CO2 injection has been used to improve oil recovery for the last 4 decades. In recent years, CO2 injection has become more attractive because of the dual effect: injection in the subsurface (1) allows for reduction of the CO2 concentration in the atmosphere to reduce global warming and (2) improves the oil recovery. One of the screening criteria for CO2 injection as an enhanced oil recovery method is based on the measurement of CO2 minimum miscibility pressure (MMP) in a slim tube. The slim tube data are used for the purpose of field evaluation and for the tuning of the equations of state. The slim tube represents one-dimensional (1D) horizontal flow. When CO2 dissolves in the oil, the density may increase. The effect of the density increase in high-permeability reservoirs when CO2 is injected from the top has not been modeled in the past. The increase in density changes the flow path from 1D to two-dimensional (2D) and three-dimensional (3D) (downward flow). As a result of this density effect, the compositional path in a reservoir can be radically different from the flow path in a slim tube. In this work, we study the density effect from CO2 dissolution in modeling of CO2 injection. We account for the increase in oil density with CO2 dissolution using the Peng鈥揜obinson equation of state. The viscosity is modeled based on the Pedersen鈥揊redenslund viscosity correlation. We perform compositional simulation of CO2 injection in a 2D vertical cross-section with the density effect. Our results show that the density increase from CO2 dissolution may have a drastic effect on the CO2 flow path and recovery performance. One conclusion from this work is that there is a need to have accurate density data for CO2/oil mixtures at different CO2 concentrations to model properly CO2 injection studies. Our main conclusion is that the downward flow of the CO2 and oil mixture may not be gravity-stable, despite the widespread assumption in the literature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700