Efficient Scavenging of Solar and Wind Energies in a Smart City
详细信息    查看全文
  • 作者:Shuhua Wang ; Xue Wang ; Zhong Lin Wang ; Ya Yang
  • 刊名:ACS Nano
  • 出版年:2016
  • 出版时间:June 28, 2016
  • 年:2016
  • 卷:10
  • 期:6
  • 页码:5696-5700
  • 全文大小:393K
  • 年卷期:0
  • ISSN:1936-086X
文摘
To realize the sustainable energy supply in a smart city, it is essential to maximize energy scavenging from the city environments for achieving the self-powered functions of some intelligent devices and sensors. Although the solar energy can be well harvested by using existing technologies, the large amounts of wasted wind energy in the city cannot be effectively utilized since conventional wind turbine generators can only be installed in remote areas due to their large volumes and safety issues. Here, we rationally design a hybridized nanogenerator, including a solar cell (SC) and a triboelectric nanogenerator (TENG), that can individually/simultaneously scavenge solar and wind energies, which can be extensively installed on the roofs of the city buildings. Under the same device area of about 120 mm × 22 mm, the SC can deliver a largest output power of about 8 mW, while the output power of the TENG can be up to 26 mW. Impedance matching between the SC and TENG has been achieved by using a transformer to decrease the impedance of the TENG. The hybridized nanogenerator has a larger output current and a better charging performance than that of the individual SC or TENG. This research presents a feasible approach to maximize solar and wind energies scavenging from the city environments with the aim to realize some self-powered functions in smart city.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700