Reversibility, Dopant Desorption, and Tunneling in the Temperature-Dependent Conductivity of Type-Separated, Conductive Carbon Nanotube Networks
详细信息    查看全文
文摘
We present a comprehensive study of the effects of doping and temperature on the conductivity of single-walled carbon nanotube (SWNT) networks. We investigated nearly type-pure networks as well as networks comprising precisely tuned mixtures of metallic and semiconducting tubes. Networks were studied in their as-produced state and after treatments with nitric acid, thionyl chloride, and hydrazine to explore the effects of both intentional and adventitious doping. For intentionally and adventitiously doped networks, the sheet resistance (Rs) exhibits an irreversible increase with temperature above ∼350 K. Dopant desorption is shown to be the main cause of this increase and the observed hysteresis in the temperature-dependent resistivity. Both thermal and chemical dedoping produced networks free of hysteresis. Temperature-programmed desorption data showed that dopants are most strongly bound to the metallic tubes and that networks consisting of metallic tubes exhibit the best thermal stability. At temperatures below the dopant desorption threshold, conductivity in the networks is primarily controlled by thermally assisted tunneling through barriers at the intertube or interbundle junctions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700