Post-Treatments for Multifunctional Property Enhancement of Carbon Nanotube Fibers from the Floating Catalyst Method
详细信息    查看全文
文摘
We investigated the effects of the synthesis conditions and condensation processes on the chemical compositions and multifunctional performance of the directly spun carbon nanotube (CNT) fibers. On the basis of the optimized synthesis conditions, a two-step post-treatment technique which involved acidification and epoxy infiltration was also developed to further enhance their mechanical and electrical properties. As a result, their tensile strength and Young’s modulus increased remarkably by 177% and 325%, respectively, while their electrical conductivity also reached 8235 S/cm. This work may provide a general strategy for the postprocessing optimization of the directly spun CNT fibers. The treated CNT fibers with superior properties are promising for a wide range of applications, such as structural reinforcements and lightweight electric cables.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700