Multifold Electrical Conductance Enhancements at Metal–Bismuth Telluride Interfaces Modified Using an Organosilane Monolayer
详细信息    查看全文
文摘
Controlling electrical transport across metal-thermoelectric interfaces is key to realizing high efficiency devices for solid state refrigeration and waste-heat harvesting. We obtain up to 17-fold increases in electrical contact conductivity Σc by inserting a mercaptan-terminated organosilane monolayer at Cu–Bi2Te3 and Ni–Bi2Te3 interfaces, yielding similar Σc for both metals by offsetting an otherwise 7-fold difference. The Σc improvements are underpinned by silane-moiety-induced inhibition of Cu diffusion, promotion of high-conductivity interfacial nickel telluride formation, and mercaptan-induced reduction of Bi2Te3 surface oxides. Our findings should enable incorporating nanomolecular layers with appropriately chosen terminal moieties in thermoelectric device metallization schemes without metal diffusion barriers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700