Structure and Stability of SnO2 Nanocrystals and Surface-Bound Water Species
详细信息    查看全文
文摘
The structure of SnO2 nanoparticles (avg. 5 nm) with a few layers of water on the surface has been elucidated by atomic pair distribution function (PDF) methods using in situ neutron total scattering data and molecular dynamics (MD) simulations. Analysis of PDF, neutron prompt gamma, and thermogravimetric data, coupled with MD-generated surface D2O/OD configurations demonstrates that the minimum concentration of OD groups required to prevent rapid growth of nanoparticles during thermal dehydration corresponds to 0.7 monolayer coverage. Surface hydration layers not only stabilize the SnO2 nanoparticles but also induce particle-size-dependent structural modifications and are likely to promote interfacial reactions through hydrogen bonds between adjacent particles. Upon heating/dehydration under vacuum above 250 掳C, nanoparticles start to grow with low activation energies, rapid increase of nanoparticle size, and a reduction in the a lattice dimension. This study underscores the value of neutron diffraction and prompt-gamma analysis, coupled with molecular modeling, in elucidating the influence of surface hydration on the structure and metastable persistence of oxide nanomaterials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700