Structure鈥揂ctivity Correlation for Relative Chain Initiation to Propagation Rates in Single-Site Olefin Polymerization Catalysis
详细信息    查看全文
文摘
We have determined what makes the first monomer insertion (initiation) facile or slow for many homogeneous olefin polymerization catalysts. Specifically, we have developed the first comprehensive and mechanistically detailed quantitative structure鈥揳ctivity relationship (QSAR) that successfully predicts relative chain initiation to propagation rates for a large series of group 4 single-site olefin polymerization catalysts. This QSAR correctly predicts (a) whether initiation is facile or slow and (b) the ki/kp ratio for a catalyst family with slow initiation. Monomer concentration versus time profiles were measured for batch polymerization of 1-hexene catalyzed by 27 Cp鈥睺i(OAr)Me2 and Cp*Zr(OC6H-2,3,5,6-Ph4)J2 (J = Me, CH2Ph) complexes activated with B(C6F5)3. Comparison of DFT calculations to experimental data revealed that the underlying cause of slow versus facile initiation is the difference in docking site opening sizes between the initiation kinetically dominant ion pair (i-KDIP) and the propagation kinetically dominant ion pair (p-KDIP). Specifically, initiation is facile if the i-KDIP and p-KDIP have similar docking site opening sizes or the i-KDIP docking site opening is not small but slow if the i-KDIP has a small docking site opening and the p-KDIP has a much larger docking site opening. The ion pairing dynamics was strongly influenced by (a) the choice of solvent, (b) whether or not the catalyst exhibits opportunistic ligand coordination, and (c) the type of initiating group. DFT-computed transition states for selected systems confirmed the underlying chemical mechanism that gives rise to this QSAR.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700