Accelerated and Efficient Photochemistry from Higher Excited Electronic States in Fulgide Molecules
详细信息    查看全文
文摘
The photoinduced electrocyclic ring-opening of a fluorinated indolylfulgide is investigated by stationary and ultrafast spectroscopy in the UV/vis spectral range. Photoreactions, initiated by optical excitation into the S1 (570 nm) and SN (340 nm) absorption band of the closed isomer, lead to considerable differences in reaction dynamics and quantum yields. Transient absorption studies point to different reaction pathways depending on the specific excitation wavelength: excitation into the S1 state leads to the known reaction behavior with a picosecond decay to the ground state and a small quantum yield of 7% for the photoproduct. The SN state shows an unexpected long lifetime of 0.5 ps. The photoreaction starting from the SN state leads to a large extent directly to the product ground state and back to the educt ground state. This results in an increased reaction quantum yield of 28%. In contradiction to Kasha’s rule, the S1 state is only populated with an efficiency of 38%. The observed behavior strongly differs from the expected picture with fast relaxation into the S1 state and a subsequent ring-opening reaction starting from the lowest excited electronic state. Quantum chemical calculations confirm and complement the experimental findings allowing a sound molecular interpretation to be obtained.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700