Separation of Hydrogen Gas from Coal Gas by Graphene Nanopores
详细信息    查看全文
文摘
We designed a series of porous graphene as the separation membrane for hydrogen gas in coal gas. The permeation process of different gas molecules (H2, CO, CH4, and H2S) in porous graphene was evaluated under the atmospheric pressure and high pressure conditions. Our results indicate the hydrogen permeability and selectivity could be tuned by the size and the shape of the porous graphene. For graphene with bigger pores, the selectivity for hydrogen gas could decrease. In the porous graphene with same pore area, the hydrogen gas selectivity could be affected by the shape of the pore. The potential of mean force (PMF) of different gases to pass through a good separation candidate was calculated. The order of PMF for different gases to pass through the good separation candidate is H2 < CO < CH4 鈮?H2S, which is also confirmed by the first-principle density function theory (DFT) calculation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700