Effects of Carbon and Nitrogen Plasma Immersion Ion Implantation on In vitro and In vivo Biocompatibility of Titanium Alloy
详细信息    查看全文
文摘
Growth of bony tissues on titanium biomedical implants can be time-consuming, thereby prolonging recovery and hospitalization after surgery and a method to improve and expedite tissue-implant integration and healing is thus of scientific and clinical interests. In this work, nitrogen and carbon plasma immersion ion implantation (N鈥揚III and C鈥揚III) is conducted to modify Ti-6Al-4V to produce a graded surface layer composed of TiN and TiC, respectively. Both PIII processes do not significantly alter the surface hydrophilicity but increase the surface roughness and corrosion resistance. In vitro studies disclose improved cell adhesion and proliferation of MC3T3-E1 preosteoblasts and L929 fibroblasts after PIII. Micro-CT evaluation conducted 1 to 12 weeks after surgery reveals larger average bone volumes and less bone resorption on the N鈥揚III and C鈥揚III titanium alloy pins than the unimplanted one at every time point. The enhancements observed from both the in vitro and in vivo studies can be attributed to the good cytocompatibility, roughness, and corrosion resistance of the TiN and TiC structures which stimulate the response of preosteoblasts and fibroblasts and induce early bone formation. Comparing the two PIII processes, N鈥揚III is more effective and our results suggest a simple and practical means to improve the surface biocompatibility of medical-grade titanium alloy implants.

Keywords:

titanium alloys; plasma immersion ion implantation; cytocompatibility; surface chemistry; cells; bones

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700