Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide
详细信息    查看全文
文摘
We report an approach to determining membrane peptides and membrane protein complex structures by magic-angle-spinning solid-state NMR and molecular dynamics simulation. First, an ensemble of low energy structures of mastoparan-X, a wasp venom peptide, in lipid bilayers was generated by replica exchange molecular dynamics (REMD) simulation with the implicit membrane/solvent model. Next, peptide structures compatible with experimental 13C, C, and C鈥?chemical shifts were selected from the ensemble. The 13C chemical shifts alone were sufficient for the selection with backbone rmsd's of 0.8 脜 from the experimentally determined structure. The dipolar couplings between the peptide protons and lipid 2H/31P nuclei were obtained from the 13C-observed 2H/31P-selective 1H-demagnetization experiments for selecting the backbone and side chain structures relative to the membrane. The simulated structure agreed with the experimental one in the depth and orientation. The REMD simulation can be used for supplementing the limited structural constraints obtainable from the solid-state NMR spectra.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700