Population Balance Model-Based Multiobjective Optimization of a Multisegment Multiaddition (MSMA) Continuous Plug-Flow Antisolvent Crystallizer
详细信息    查看全文
  • 作者:Bradley J. Ridder ; Aniruddha Majumder ; Zoltan K. Nagy
  • 刊名:Industrial & Engineering Chemistry Research
  • 出版年:2014
  • 出版时间:March 19, 2014
  • 年:2014
  • 卷:53
  • 期:11
  • 页码:4387-4397
  • 全文大小:562K
  • 年卷期:v.53,no.11(March 19, 2014)
  • ISSN:1520-5045
文摘
Crystallization is a major separation process in the pharmaceutical industry. Most crystallizations are performed batchwise, but there is great incentive for converting them to continuous operations. This paper investigates the modeling, simulation, and optimization of a special antisolvent plug-flow crystallizer: the multisegmented, multiaddition plug-flow crystallizer (MSMA-PFC). The MSMA-PFC accepts multiple antisolvent flows along its length, permitting finer control of supersaturation. A steady-state population balance equation was applied for tracking the crystal size distribution, and a mass balance equation was used to track the depletion of dissolved solute (flufenamic acid). A multiobjective optimization framework was applied to determine the antisolvent flow rates into each segment that simultaneously maximize the average crystal size, and minimize the coefficient of variation. The set of coupled differential equations was solved, depending on circumstance, with either the method-of-moments (MOM), or the high-resolution finite-volume (FV) method. The significant nonconvexity in the objective functions motivated the use of the nondominated sorting genetic algorithm (NSGA-II) to calculate the Pareto frontiers for the two competing objectives. It was found that the optimal antisolvent profile provides better product crystals, compared to the cases with equal additions of antisolvent in 1鈥? injection points by keeping the total amount of antisolvent the same. The sensitivity of the Pareto frontier to variation in the growth and nucleation kinetic parameters was investigated. In addition, a novel simultaneous design and control (SDC) approach was proposed, based on the optimization of the full crystallizer design, over not only antisolvent profile, but also the number of injections and total crystallizer length, providing the best crystallization design that can allow optimal product performance in conjunction with the multiaddition control approach.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700