Cavity-Photon Controlled Thermoelectric Transport through a Quantum Wire
详细信息    查看全文
文摘
We investigate the influence of a quantized photon field on thermoelectric transport of electrons through a quantum wire embedded in a photon cavity. The quantum wire is connected to two electron reservoirs at different temperatures leading to the generation of a thermoelectric current. The transient thermoelectric current strongly depends on the photon energy and the number of photons initially in the cavity. Two different regimes are studied, off-resonant and on-resonant polarized fields, with photon energy smaller than, or equal to, the energy spacing between some of the lowest states in the quantum wire. We observe that the current is inverted for the off-resonant photon field due to participation of photon replica states in the transport. A reduction in the current is recorded for the resonant photon field, a direct consequence of the Rabi-splitting.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700