Photoactive Excited States in Explosive Fe(II) Tetrazine Complexes: A Time-Dependent Density Functional Theory Study
详细信息    查看全文
文摘
Time-dependent density functional theory was used to investigate optical absorption of novel Fe(II) coordination complexes with tetrazine ligands. These octahedral compounds absorb near-infrared (NIR) light and can be applied as secondary explosives with low laser-initiation thresholds compared to pentaerythritol tetranitrate. Herein, numerous ligand architectures are studied to determine relationships between molecular structure and optical absorption in order to tune the low-energy charge transfer (CT) band. Geometrical structures and vertical excitation energies calculated with the TPSSh density functional and 6-311G basis set are in excellent agreement with experiment, with a maximum deviation from UV–vis spectra of 0.10 eV. By altering molecular substituents of the ligand scaffold, the CT band can be tuned between 500 and 1100 nm. Additional conjugation in the ligand scaffold pushes the CT band into the NIR region of the spectrum. Triazolo-tetrazine ligands shift the CT band by approximately 0.70 eV relative to that of Fe(II) coordinated with bipyridine ligands. Oxygenated analogues of several compounds are also studied in order to predict optical response, while improving explosive performance. A natural population analysis suggests that the high nitrogen content of the ligand scaffolds in these energetic compounds lessens their metal-to-ligand charge transfer character compared to that of Fe(II) coordinated with bipyridine ligands. The proposed model quantum chemistry is used to establish structure–property relationships for optical properties in this class of materials in order to make optical initiation with conventional lasers a more feasible approach.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700