用户名: 密码: 验证码:
Geometries, Binding Energies, Ionization Potentials, and Electron Affinities of Metal Clusters: Mgn0, ± 1, n = 1–7
详细信息    查看全文
文摘
Equilibrium geometries, binding energies, adiabatic ionization potentials, and adiabatic electron affinities for neutral and singly charged magnesium clusters, Mgn0, ± 1, n = 1–7, have been computed using 39 exchange-correlation (XC) functionals in Kohn–Sham density functional theory and several coupled-cluster methods with single, double, and triple excitations, including CCSD(T) for all species, CCSD(2)T and CR-CC(2,3) for species with n = 1–3, and CCSDt, CC(t;3), and CCSDT for species with n = 1 and 2. We have used augmented polarized–valence and polarized–core–valence correlation-consistent basis sets. We have found that the geometry and binding energy of the weakly bound Mg2 dimer requires a robust treatment of connected triple excitations, represented in this work by the CR-CC(2,3), CC(t;3), and full CCSDT methods, which are more accurate than the popular quasi-perturbative CCSD(T) approximation, but CCSD(T) is sufficiently accurate to be applied to other Mg clusters. We have also demonstrated that for all Mg clusters examined in this study, hybrid XC functionals generally have higher accuracy than local ones, with PW6B95, SOGGA11-X, M11, and PWB6K being the most accurate, both for the geometries and for the binding energies, ionization potentials, and electron-detachment energies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700