DFT Study on the Standard Electrode Potentials of Imidazole, Tetrathiafulvalene, and Tetrathiafulvalene−Imidazole
详细信息    查看全文
  • 作者:Tugba Tugsuz
  • 刊名:Journal of Physical Chemistry B
  • 出版年:2010
  • 出版时间:December 30, 2010
  • 年:2010
  • 卷:114
  • 期:51
  • 页码:17092-17101
  • 全文大小:273K
  • 年卷期:v.114,no.51(December 30, 2010)
  • ISSN:1520-5207
文摘
Extensive DFT calculations on the standard electrode potentials of imidazole (Im), tetrathiafulvalene (TTF), and 2-, 4-, and 5-TTF-Im were carried out. Geometries and Gibbs free energies of H-bonded dimer, anion, protonated cation, and neutral structures of Im, mono- and dication, and neutral structures of TTF in gas and acetonitrile solvent were computed by using 10 hybrid density functionals (B3LYP, TPSSH, PBEH1PBE, M06, M062X, X3LYP, BMK, B1B95, M05, M052X) combined with the TZVP basis set. CPCM and SMD solvation models were applied to predict the Gibbs free energies of molecules in acetonitrile solvent. Frequency calculations were carried out for all structures, and none of them has been found to exhibit any imaginary frequency. Finally, the BMK hybrid functional was selected for computation of the standard electrode potential of TTF-Im, because it gives the most accurate values in both Im and TTF, differing by 0.05 V from the experimental ones. Moreover, frequencies from the BMK functional are reasonably close to the experimental ones. The standard electrode potentials of 2-, 4-, and 5-TTF-Im predicted for two-electron oxidation are 0.946, 0.870, and 0.839 V in CPCM and 0.927, 0.866, and 0.824 V in SMD. For one-electron oxidation these are 0.491, 0.421, and 0.400 V in CPCM and 0.476, 0.377, and 0.360 V in SMD, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700