Antiviral Activity of Various 1-(2′-Deoxy-β-d-lyxofuranosyl), 1-(2′-Fluoro-β-d-xylofuranosyl), 1-(3′-Fluoro-&#
详细信息    查看全文
文摘
Despite the existence of successful vaccine and antiviral therapies, infection with hepatitis B virus (HBV) continues to be a major global cause of acute and chronic liver disease and high mortality. We synthesized and evaluated several lyxofuranosyl, 2′-fluoroxylofuranosyl, 3′-fluoroarabinofuranosyl, and 2′-fluoro-2′,3′-didehydro-2′,3′-dideoxyribose pyrimidine nucleoside analogues for antiviral activities against hepatitis B virus. Among the compounds examined, 1-(2-deoxy-β-d-lyxofuranosyl)thymine (23), 1-(2-deoxy-β-d-lyxofuranosyl)-5-trifluoromethyluracil (25), 1-(2-deoxy-2-fluoro-β-d-xylofuranosyl)uracil (38), 1-(2-deoxy-2-fluoro-β-d-xylofuranosyl)thymine (39), 2′,3′-dideoxy-2′,3′-didehydro-2′-fluorothymidine (48), and 2′,3′-dideoxy-2′,3′-didehydro-2′-fluoro-5-ethyluridine (49) were found to possess significant anti-HBV activity against DHBV in primary duck hepatocytes with EC50 values of 4.1, 3.3, 40.6, 3.8, 0.2, and 39.0 μM, respectively. Compounds 23, 25, 39, 48, and 49 (EC50 = 41.3, 33.7, 19.2, 2.0−4.1, and 39.0 μM, respectively) exhibited significant activity against wild-type human HBV in 2.2.15 cells. Intriguingly, 25, 39, 48, and 49 retained sensitivity against lamivudine-resistant HBV containing a single mutation (M204I) and 48 emerged as an effective inhibitor of drug-resistant HBV with an EC50 of 4.1 μM. In contrast, 50% inhibition could not be achieved by lamivudine at 44 μM concentration in the drug-resistant strain. The compounds investigated did not show cytotoxicity to host cells up to the highest concentrations tested.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700