Identification of Antrocin from Antrodia camphorata as a Selective and Novel Class of Small Molecule Inhibitor of Akt/mTOR Signaling in Metastatic Breast Cancer MDA-MB-231 Cells
详细信息    查看全文
文摘
The PI3K/Akt/mTOR pathway is considered to be an attractive target for the development of novel anticancer molecules. This paper reports for the first time that a small molecule, antrocin (MW = 234), from Antrodia camphorata was a potent antagonist in various cancer types, being highest in metastatic breast cancer MDA-MB-231 cells (MMCs) with an IC50 value of 0.6 渭M. Antrocin was a superior antiproliferator in MMCs as compared with doxorubicin and cisplatin, prevents colony formation, and was nontoxic to nontumorgenic MCF10A and HS-68 cells. Antrocin induced dose-dependent apoptosis in MMCs and caused cleavage of caspase-3 and poly(ADP-ribose) polymerase. Antrocin also caused a time-dependent decrease in protein expression of anti-apoptotic Bcl-2, Bcl-xL, survivin, and their mRNA, with concomitant increase in pro-apoptotic Bax and cytosolic cytochrome c. In a mechanistic study, antrocin suppressed the phosphorylation of Akt and its downstream effectors mTOR, GSK-3尾, and NF-魏B. Furthermore, down-regulation of Akt by small interfering RNA prior to antrocin treatment resulted in enhanced cell growth inhibition and apoptosis. Thus, antrocin as an Akt/mTOR dual inhibitor has broad applicability in the development of a clinical trial candidate for the treatment of metastatic breast cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700