Magnetoelectric Perovskite-Spinel Bilayered Nanocomposites Synthesized by Liquid-Phase Deposition
详细信息    查看全文
文摘
Highly uniform bilayered perovskite-spinel hybrid nanostructures were deposited on glass and LaNiO3-buffered (100) silicon substrates at almost-ambient temperatures via the liquid-phase deposition (LPD) method. Field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) evidenced that the perovskite and spinel layers are constructed by arrays of densely packed nanoparticles with uniform sizes. The bilayered nanocomposites exhibit both piezoelectricity and ferrimagnetism at room temperature. The value of the static piezoelectric coefficient of the PbTiO3 (PTO) film was 14.1 pm/V, whereas the values of the saturation magnetization were 234.4 and 223.2 emu/cm3 for the PbTiO3−Co0.32Fe2.68O4 (CFO) and PbTiO3−Ni0.66Fe2.34O4 (NFO), respectively. The coercivity of the nanocomposite decreased by 12.11% for the PTO−CFO, whereas, for the PTO−NFO, it increased by 20%, with respect to the coercivity values of the pristine ferrite films, which is the result of a magnetoelectric coupling between the two dissimilar layers in the nanocomposite. Additional evidence about a stress-induced magnetoelectric coupling in these bilayered structures was provided by Raman spectroscopy, which showed that, under a magnetic field, the vibrational modes of the nanocomposite are altered by the deformation of the top ferrite layer. In turn, this will generate a stress at the shared interface, thereby leading to a shift toward higher wavenumbers of the Raman bands of both the perovskite and spinel phases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700