Chelate Effects in Glyme/Lithium Bis(trifluoromethanesulfonyl)amide Solvate Ionic Liquids. I. Stability of Solvate Cations and Correlation with Electrolyte Properties
详细信息    查看全文
文摘
To develop a basic understanding of a new class of ionic liquids (ILs), 鈥渟olvate鈥?ILs, the transport properties of binary mixtures of lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]) and oligoethers (tetraglyme (G4), triglyme (G3), diglyme (G2), and monoglyme (G1)) or tetrahydrofuran (THF) were studied. The self-diffusion coefficient ratio of the solvents and Li+ ions (Dsol/DLi) was a good metric for evaluating the stability of the complex cations consisting of Li+ and the solvent(s). When the molar ratio of Li+ ions and solvent oxygen atoms ([O]/[Li+]) was adjusted to 4 or 5, Dsol/DLi always exceeded unity for THF and G1-based mixtures even at the high concentrations, indicating the presence of uncoordinating or highly exchangeable solvents. In contrast, long-lived complex cations were evidenced by a Dsol/DLi 1 for the longer G3 and G4. The binary mixtures studied were categorized into two different classes of liquids: concentrated solutions and solvate ILs, based on Dsol/DLi. Mixtures with G2 exhibited intermediate behavior and are likely the borderline dividing the two categories. The effect of chelation on the formation of solvate ILs also strongly correlated with electrolyte properties; the solvate ILs showed improved thermal and electrochemical stability. The ionicity (螞imp/螞NMR) of [Li(glyme or THF)x][TFSA] exhibited a maximum at an [O]/[Li+] ratio of 4 or 5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700