Li+ Solvation and Ionic Transport in Lithium Solvate Ionic Liquids Diluted by Molecular Solvents
详细信息    查看全文
文摘
An equimolar mixture of lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]) and either triglyme (G3) or tetraglyme (G4) yielded stable molten complexes: [Li(G3)][TFSA] and [Li(G4)][TFSA]. These are known as solvate ionic liquids (SILs). Glyme-based SILs have thermal and electrochemical properties favorable for use as lithium-conducting electrolytes in lithium batteries. However, their intrinsically high viscosities and low ionic conductivities prevent practical application. Therefore, we diluted SILs with molecular solvents in order to enhance their ionic conductivities. To determine the stabilities of the complex cations in diluted SILs, their conductivity and viscosity, the self-diffusion coefficients, and Raman spectra were measured. [Li(G3)]+ and [Li(G4)]+ were stable in nonpolar solvents, that is, toluene, diethyl carbonate, and a hydrofluoroether (HFE); however, ligand exchange took place between glyme and solvent when polar solvents, that is, water and propylene carbonate, were used. In acetonitrile (AN) mixed solvent complex cations [Li(G3)(AN)]+ and [Li(G4)(AN)]+ were formed. [Li(G4)][TFSA] was more conductive than [Li(G3)][TFSA] when diluted with nonpolar solvents due to the greater ionic dissociativity in [Li(G4)][TFSA] mixtures. In view of the stability of the Li–glyme complex cations, the enhanced ionic conductivities, and the intrinsic electrochemical stabilities of the diluting solvents, [Li(G4)][TFSA] diluted by toluene or HFE, can be a candidate for an alternative battery electrolyte.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700