Influence of Graphene Curvature on Hydrogen Adsorption: Toward Hydrogen Storage Devices
详细信息    查看全文
文摘
The ability of atomic hydrogen to chemisorb on graphene makes the latter a promising material for hydrogen storage. On the basis of scanning tunneling microscopy techniques, we report on site-selective adsorption of atomic hydrogen on convexly curved regions of monolayer graphene grown on SiC(0001). This system exhibits an intrinsic curvature owing to the interaction with the substrate. We show that at low coverage hydrogen is found on convex areas of the graphene lattice. No hydrogen is detected on concave regions. These findings are in agreement with theoretical models which suggest that both binding energy and adsorption barrier can be tuned by controlling the local curvature of the graphene lattice. This curvature dependence combined with the known graphene flexibility may be exploited for storage and controlled release of hydrogen at room temperature, making it a valuable candidate for the implementation of hydrogen-storage devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700