Periodic Mesoporous Organosilicas Consisting of 3D Hexagonally Ordered Interconnected Globular Pores
详细信息    查看全文
文摘
A new family of periodic mesoporous organosilicas with 100% E-configured ethenylene-bridges and controllable pore systems is presented. 2D hexagonally ordered hybrid nanocomposites consisting of cylindrical pores are obtained, of which some are filled with solid material. The architectural composition of these hybrid materials can be accurately controlled by fine-tuning the reaction conditions; that is, there is a unique correlation between the reaction mixture acidity and the amount of confined mesopores. This correlation is related to the filling of the pores with solid material whereby the length of the pore channels can be tailored. Hereby the mesophase either shifts toward long-ranged 2D hexagonally ordered open cylinders or toward 3D hexagonally ordered interconnected spheres. The synthesis of these organic−inorganic hybrid composites is straightforward via the direct condensation of E-1,2-bis(triethoxysilyl)ethene, in the presence of pluronic P123. The true nature of these periodic mesoporous organosilicas is disclosed by means of nitrogen gas physisorption, nonlocal density functional theory, SAXS, TEM, and electron-tomography.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700