Biofilm Community Dynamics in Bench-Scale Annular Reactors Simulating Arrestment of Chloraminated Drinking Water Nitrification
详细信息    查看全文
文摘
Annular reactors (ARs) were used to study biofilm community succession and provide ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I鈥揑V). Analysis of 16S rRNA-encoding gene sequence reads (454-pyrosequencing) examined viable and total biofilm communities and found total samples were representative of the underlying viable community. Bacterial community structure showed dynamic changes corresponding with AR operational parameters. Period I (complete nitrification and no NH2Cl residual) was dominated by Bradyrhizobium (total cumulative distribution: 38%), while environmental Legionella-like phylotypes peaked (19%) during Period II (complete nitrification and minimal NH2Cl residual). Nitrospira moscoviensis (nitrite-oxidizing bacteria) was detected in early periods (2%) but decreased to <0.02% in later periods, corresponding to nitrite accumulation. Methylobacterium (19%) and members of Nitrosomonadaceae (42%) dominated Period III (complete ammonia and partial nitrite oxidation and low NH2Cl residual). An increase in Afipia (haloacetic acid-degrading bacteria) relative abundance (<2% to 42%) occurred during Period IV (minimal nitrification and moderate to high NH2Cl residual). Microbial community and operational data provided no evidence of taxa-time relationship, but rapid community transitions indicated that the system had experienced ecological regime shifts to alternative stable states.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700