Exchange Interactions at the Origin of Slow Relaxation of the Magnetization in {TbCu3} and {DyCu3} Single-Molecule Magnets
详细信息    查看全文
文摘
New {TbCu3} and {DyCu3} single-molecule magnets (SMMs) containing a low-symmetry LnIII center (shape measurements relative to a trigonal dodecahedron and biaugmented trigonal prism are 2.2鈥?.3) surrounded by three CuII metalloligands are reported. SMM behavior is confirmed by frequency-dependent out-of-phase ac susceptibility signals and single-crystal temperature and sweep rate dependent hysteresis loops. The ferromagnetic exchange interactions between the central LnIII ion and the three CuII ions could be accurately measured by inelastic neutron scattering (INS) spectroscopy and modeled effectively. The excitations observed by INS correspond to flipping of CuII spins and appear at energies similar to the thermodynamic barrier for relaxation of the magnetization, 鈭?5鈥?0 K, and are thus at the origin of the SMM behavior. The magnetic quantum number Mtot of the cluster ground state of {DyCu3} is an integer, whereas it is a half-integer for {TbCu3}, which explains their vastly different quantum tunneling of the magnetization behavior despite similar energy barriers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700