Sensitization of TiO2 with PbSe Quantum Dots by SILAR: How Mercaptophenol Improves Charge Separation
详细信息    查看全文
文摘
The use of PbSe quantum dots (QDs) as sensitizers for TiO2 samples has been primarily hampered by limitations on charge injection. Herein, a novel successive ionic layer adsorption and reaction (SILAR) method, allowing for an intimate TiO2/PbSe contact and a strong quantum confinement, is described. Photoelectrochemical experiments and transient absorption measurements reveal that charge separation indeed occurs when using either aqueous sulfite or spiro-OMeTAD as a hole conductor and that it can be further enhanced by attaching p-mercaptophenol (MPH) to the QD surface. These results suggest that MPH can promote an efficient funneling of the photogenerated holes from the PbSe to the hole scavenging medium, thereby increasing the yield of electron injection into TiO2. In a more general vein, this work paves the way for the fabrication of PbSe-sensitized solar cells, emphasizing the importance of controlling the QD/hole scavenger interface to further boost their conversion efficiency.

Keywords:

charge separation; transient absorption spectroscopy; electrochemical characterization; SILAR; quantum dot; solar cell

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700