Kinetic Isotope Effects on Aromatic and Benzylic Hydroxylation by Chromobacterium violaceum Phenylalanine Hydroxylase as Probes of Chemical Mechanism and Reactivity
详细信息    查看全文
  • 作者:Aram J. Panay ; Paul F. Fitzpatrick
  • 刊名:Biochemistry
  • 出版年:2008
  • 出版时间:October 21, 2008
  • 年:2008
  • 卷:47
  • 期:42
  • 页码:11118-11124
  • 全文大小:165K
  • 年卷期:v.47,no.42(October 21, 2008)
  • ISSN:1520-4995
文摘
Phenylalanine hydroxylase from Chromobacterium violaceum (CvPheH) is a non-heme iron monooxygenase that catalyzes the hydroxylation of phenylalanine to tyrosine. In this study, we used deuterium kinetic isotope effects to probe the chemical mechanisms of aromatic and benzylic hydroxylation to compare the reactivities of bacterial and eukaryotic aromatic amino acid hydroxylases. The Dkcat value for the reaction of CvPheH with [2H5]phenylalanine is 1.2 with 6-methyltetrahydropterin and 1.4 with 6,7-dimethyltetrahydropterin. With the mutant enzyme I234D, the Dkcat value decreases to 0.9 with the latter pterin; this is likely to be the intrinsic effect for addition of oxygen to the amino acid. The isotope effect on the subsequent tautomerization of a dienone intermediate was determined to be 5.1 by measuring the retention of deuterium in tyrosine produced from partially deuterated phenylalanine; this large isotope effect is responsible for the normal effect on kcat. The isotope effect for hydroxylation of the methyl group of 4-CH3-phenylalanine, obtained from the partitioning of benzylic and aromatic hydroxylation products, is 10. The temperature dependence of this isotope effect establishes the contribution of hydrogen tunneling to benzylic hydroxylation by this enzyme. The results presented here provide evidence that the reactivities of the prokaryotic and eukaryotic hydroxylases are similar and further define the reactivity of the iron center for the family of aromatic amino acid hydroxylases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700