Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi)
详细信息    查看全文
文摘
Corynebacterium glutamicum is an important organism for the industrial production of amino acids. Metabolic pathways in this organism are usually engineered by conventional methods such as homologous recombination, which depends on rare double-crossover events. To facilitate the mapping of gene expression levels to metabolic outputs, we applied CRISPR interference (CRISPRi) technology using deactivated Cas9 (dCas9) to repress genes in C. glutamicum. We then determined the effects of target repression on amino acid titers. Single-guide RNAs directing dCas9 to specific targets reduced expression of pgi and pck up to 98%, and of pyk up to 97%, resulting in titer enhancement ratios of l-lysine and l-glutamate production comparable to levels achieved by gene deletion. This approach for C. glutamicum metabolic engineering, which only requires 3 days, indicates that CRISPRi can be used for quick and efficient metabolic pathway remodeling without the need for gene deletions or mutations and subsequent selection.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700