Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides
详细信息    查看全文
文摘
Optoelectronic devices based on two-dimensional (2D) materials have shown tremendous promise over the past few years; however, there are still numerous challenges that need to be overcome to enable their application in devices. These include improving their poor photoluminescence (PL) quantum yield (QY) as well as better understanding of exciton-based recombination kinetics. Recently, we developed a chemical treatment technique using an organic superacid, bis(trifluoromethane)sulfonimide (TFSI), which was shown to improve the quantum yield in MoS2 from less than 1% to over 95%. Here, we perform detailed steady-state and transient optical characterization on some of the most heavily studied direct bandgap 2D materials, specifically WS2, MoS2, WSe2, and MoSe2, over a large pump dynamic range to study the recombination mechanisms present in these materials. We then explore the effects of TFSI treatment on the PL QY and recombination kinetics for each case. Our results suggest that sulfur-based 2D materials are amenable to repair/passivation by TFSI, while the mechanism is thus far ineffective on selenium based systems. We also show that biexcitonic recombination is the dominant nonradiative pathway in these materials and that the kinetics for TFSI treated MoS2 and WS2 can be described using a simple two parameter model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700