Chirality Driven Metallic versus Semiconducting Behavior in a Complete Series of Radical Cation Salts Based on Dimethyl-Ethylenedithio-Tetrathiafulvalene (DM-EDT-TTF)
详细信息    查看全文
文摘
Enantiopure (S,S) and (R,R) dimethyl-ethylenedithio-tetrathiafulvalene (DM-EDT-TTF) 1 donors are synthesized by cross coupling followed by decarboxylation reactions. In the solid state the methyl groups are arranged in axial positions within sofa-type conformation for the six-membered rings. Crystalline radical cation salts formulated as [(S,S)-1]2PF6, [(R,R)-1]2PF6, and [(rac)-1]2PF6 are obtained by electrocrystallization. When the experiment is conducted with enantioenriched mixtures both enantiopure and racemic phases are obtained. The monoclinic enantiopure salts, containing four independent donors in the unit cell, show semiconducting behavior supported by band structure calculations of extended H眉ckel type. The racemic salt contains only one independent donor in the mixed valence oxidation state +0.5. Under ambient pressure the racemic material is metallic down to 120 K, while an applied pressure of 11.5 kbar completely suppresses the metal鈥搃nsulator transition. Band structure calculations yield an open Fermi surface, typical for a pseudo-one-dimensional metal, with unperfected nesting, thus ruling out the possibility of charge or spin density modulations to be at the origin of the transition. Raman spectroscopy measurements, in agreement with structural analysis at 100 K, show no indication of low-temperature charge ordering in the racemic material at ambient pressure, thus suggesting Mott-type charge localization for the observed metal鈥搃nsulator transition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700