Temperature-Driven Structural Transitions in Molten Sodium Borates Na2O–B2O3: X-ray Diffraction, Thermodynamic Modeling, and Implications for Topological Constraint Theory
详细信息    查看全文
文摘
Temperature-dependent measurements of the X-ray structure factor of molten Na2B4O7 reveal a continuous structural transition. We demonstrate that the thermodynamic model of ideal associated solutions is capable of predicting this evolution of melt structure, between a low density, depolymerized melt at ?300 K above the liquidus, toward a dense, polymerized melt close to the glass transition. This temperature-dependent nature of melt structure is predicted to be strongly composition-dependent, with the B–O coordination number depending on temperature only in the range 20–50 mol % Na2O, which appears to be manifest in the broad maximum observed in the glass-transition temperatures. We discuss the ramifications of these findings for the application of topological constraint theory, with relevance to industrial glass design and manufacture, crystal growth from melts of nonlinear optical materials, geochemistry, and the understanding of melt fragility and the glass transition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700