Alloying and Defect Control within Chalcogenide Perovskites for Optimized Photovoltaic Application
详细信息    查看全文
文摘
Through density functional theory calculations, we show that the alloy perovskite system BaZr1–xTixS3 (x < 0.25) is a promising candidate for producing high power conversion efficiency (PCE) solar cells with ultrathin absorber layers. To maximize the minority carrier lifetime, which is important for achieving high PCE, the defect calculations show that BaZr1–xTixS3 films should be synthesized under moderate (i.e., near stoichiometric) growth conditions to minimize the formation of deep-level defects. The perovskite BaZrS3 is also found to exhibit ambipolar self-doping properties, indicating the ability to form homo p–n junctions. However, our theoretical calculations and experimental solid-state reaction efforts indicate that the doped perovskite BaZr1–xTixS3 (x > 0) may not be stable under thermal equilibrium growth conditions. Calculations of decomposition energies suggest that introducing compressive strain may be a plausible approach to stabilize BaZr1–xTixS3 thin films.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700