New Insights into Electrochemical Lithiation/Delithiation Mechanism of α-MoO3 Nanobelt by in Situ Transmission Electron Microscopy
详细信息    查看全文
  • 作者:Weiwei Xia ; Qiubo Zhang ; Feng Xu ; Litao Sun
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2016
  • 出版时间:April 13, 2016
  • 年:2016
  • 卷:8
  • 期:14
  • 页码:9170-9177
  • 全文大小:612K
  • 年卷期:0
  • ISSN:1944-8252
文摘
The α-MoO<sub>3sub> nanobelt has great potential for application as anode of lithium ion batteries (LIBs) because of its high capacity and unique one-dimensional layer structure. However, its fundmental electrochemical failure mechanism during first lithiation/delithiation process is still unclear. Here, we constructed an electrochemical setup within α-MoO<sub>3sub> nanobelt anode inside a transmission electron microscope to observe in situ the mircostructure evolution during cycles. Upon first lithiation, the α-MoO<sub>3sub> nanobelt converted into numerous Mo nanograins within the Li<sub>2sub>O matrix, with an obvious size expansion. Interestingly, α-MoO<sub>3sub> nanobelt was found to undergo a two-stage delithiation process. Mo nanograins were first transformed into crystalline Li<sub>1.66sub>Mo<sub>0.66sub>O<sub>2sub> along with the disappearance of Li<sub>2sub>O and size shrink, followed by the conversion to amorphous Li<sub>2sub>MoO<sub>3sub>. This irreversible phase conversion should be responsible for the large capacity loss in first cycle. In addition, a fully reversile phase conversion between crystalline Mo and amorphous Li<sub>2sub>MoO<sub>3sub> was revealed accompanying the formation and disapperance of the Li<sub>2sub>O layer during the subsequent cycles. Our experiments provide direct evidence to deeply understand the distinctive electrochemical lithiation/delithiation behaviors of α-MoO<sub>3sub> nanobelt, shedding light onto the development of α-MoO<sub>3sub> anode for LIBs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700